Algebra 1B Live Lesson

U4L7: Linear, Quadratic and Exponential Models (Chapter 9-7 in textbook)

Agenda

1. Review selected problems and topics from U4L7– Linear, Quadratic and Exponential Models.

2. Use the 2-column note system to take better notes in math class. Bring your math notebook and pen or pencil to each math LiveLesson class.

2-Column Notes Template

- 1. Announcements/To Do's
- 2. School-Wide Learner Outcomes
- 3. LL Objectives
- 4. Vocabulary words
- 5. Problems
- 6. Summary (End of class)

- 1. Write down important details.
- 2. What are you going to work on this week?

- 4. Definitions (fill in as we go)
- 5. Steps to solving problems
- 6. 1 or 2 sentences about the LL class.

Reminders and To – Do's

Information

1. Complete 1 math lesson per day.

- 2. Check your WebMail every day
- 3. Be prepared to spend 4 6 hours per day on schoolwork.
- 4. Remind your Learning Coach to take daily attendance

What to do

- 1. Go to your Planner in Connexus to find the math lesson for the day
- 2. Go to Connexus to find WebMail
- 3. Complete lessons for the day from your Planner. Do not get behind on lessons.
- 4. Have your Learning Coach log into Connexus daily.

Reminders and To – Do's

Information

- 5. Go to the Message Board first for information about our math class.
- 6. Contact Mr. Elizondo for math questions.

Remember: You need at least 2 phone calls with Mr. Elizondo per semester.

What to do

6. Call (559) 549 - 3244 and leave a voicemail if call is not answered.

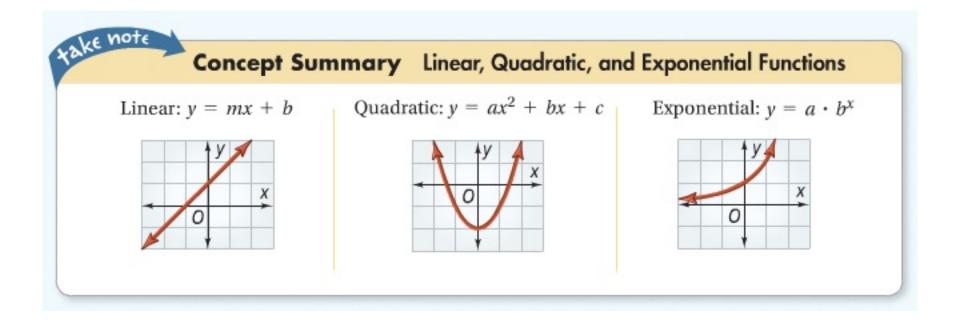
Make an appointment at: https://elizondo.youcanbook.me

Send a WebMail

U4L7 – California Common Core State Standards

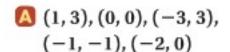
 HSF-LE.A.1: Distinguish between situations that can be modeled with linear functions and with exponential functions

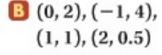
U4L7 - Objectives

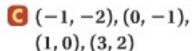


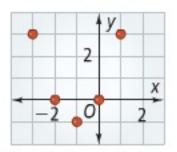
 Choose a linear, quadratic, or exponential model for data

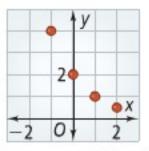
U4L7 - Introduction

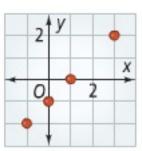

•You can use the linear, quadratic, or exponential functions you have studied to model some sets of data.




U4L7 - Choose a Model by Graphing




Graph each set of points. Which model is most appropriate for each set?



Quadratic

Exponential

Linear

U4L7 - Choosing a model using Differences or Ratios

Which type of function best models the data? Use differences or ratios.

	х	у	
+1	-3	9	7-
+1	-2	5	3
-	-1	1	1
+1	0	-3	1
+1	1	-7	7-
	2	1	

+1		х	у		
+1	+1 (0	0	7-02	5 -
+1	-	1	-0.25	-0.7	75 4
≥ 3 -2.25 ≤	-	2	-1	3	J
4 -4	-	3	-2.25	*	
	+1	4	-4)-1.7	5

The first differences are constant, so a **linear** function models the data.

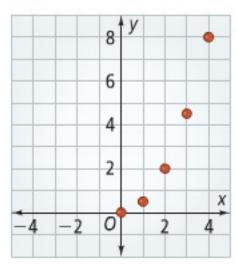
The second differences are constant, so a **quadratic** function models the data.

U4L7 - Modeling data

Which type of function best models the data in the table. Write an equation to model the data.

 x
 y

 0
 0


 1
 0.5

 2
 2

 3
 4.5

 4
 8

Step 1 Graph the data.

Step 2

The data appear to be quadratic. Test for a common second difference.

	х	у	
+1	0	0	+0.5
+1	1	0.5	().
+1	2	2	+1.5
-	3	4.5	+2.5
+1 📞	4	8	+3.5

There is a common second difference, 1.

U4L7 - Modeling data

Which type of function best models the data in the table. Write an equation to model the data.

х	у
0	0
1	0.5
2	2
3	4.5
4	8
10	1

Step 3

The graph appears to be a parabola with vertex at (0, 0), so use $y = ax^2$.

$$y = ax^2$$
 $2 = a(2)^2$ Use a point other than (0, 0) to find a.
 $2 = 4a$ Simplify.
 $0.5 = a$ Divide each side by 4.

$$y = 0.5x^2$$
 Write a quadratic function.

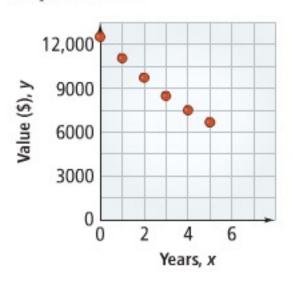
Step 4

Test two points in the data set other than (2, 2) and (0, 0).

Test (3, 4.5): Test (4, 8):
$$y = 0.5x^{2} \qquad y = 0.5x^{2}$$
$$y = 0.5(3)^{2} \qquad y = 0.5(4)^{2}$$
$$y = 4.5 \checkmark \qquad y = 8 \checkmark$$

The points (3, 4.5) and (4, 8) both satisfy $y = 0.5x^2$. The equation $y = 0.5x^2$ models the data.

U4L7 - Modeling Real-World Data



The data in the table give the value of a used car over time. Which type of function best models the data. Write an equation to model the data.

Value of Used Car

Years	Value (\$)
0	12,575
1	11,065
2	9750
3	8520
4	7540
5	6710

Step 1 Graph the data.

The graph curves and does not look quadratic. It may be exponential.

Step 2
Test for a common ratio.

	Years	Value (\$)	
110	0	12,575	$\frac{11,065}{12,575} \approx 0.88$
+1	1	11,065	9750 ~ 0.00
+1	2	9750	8520 - 0.0
+1	3	8520	$\frac{3520}{9750} \approx 0.87$
+1	4	7540	8520 ≈ 0.88
+1	5	6710	$\frac{6710}{7540} \approx 0.89$
		3	

The value of the car is roughly 0.88 times its value the previous year.

U4L7 - Modeling Real-World Data

The data in the table give the value of a used car over time. Which type of function best models the data. Write an equation to model the data.

Value of Used Car

Years	Value (\$)
0	12,575
1	11,065
2	9750
3	8520
4	7540
5	6710

Step 3

Write an exponential model.

Relate $y = a \cdot b^x$

Define Let a = the initial value, 12,575.

Let b =the decay factor, 0.88.

Write $y = 12,575 \cdot 0.88^x$

Step 4

Test two points other than (0, 12,575).

Test (2, 9750): Test (4, 7540):

 $y = 12,575 \cdot 0.88^2 \qquad \qquad y = 12,575 \cdot 0.88^4$

 $y \approx 9738 \qquad \qquad y \approx 7541$

The point (2, 9738) is close to the data point (2, 9750). The point (4, 7541) is close to the data point (4, 7540). The equation $y = 12,575 \cdot 0.88^x$ models the data.

Questions?

- Check the Message Board first
- Send a WebMail
- You can also make an appointment at https://elizondo.youcanbook.me
- You can also call me at (559) 549-3244. If I'm not available to answer your call, please leave a voicemail with your full name and phone number.